A genome-wide trans-ethnic interaction study links the PIGR-FCAMR locus to coronary atherosclerosis via interactions between genetic variants and residential exposure to traffic
نویسندگان
چکیده
Air pollution is a worldwide contributor to cardiovascular disease mortality and morbidity. Traffic-related air pollution is a widespread environmental exposure and is associated with multiple cardiovascular outcomes such as coronary atherosclerosis, peripheral arterial disease, and myocardial infarction. Despite the recognition of the importance of both genetic and environmental exposures to the pathogenesis of cardiovascular disease, studies of how these two contributors operate jointly are rare. We performed a genome-wide interaction study (GWIS) to examine gene-traffic exposure interactions associated with coronary atherosclerosis. Using race-stratified cohorts of 538 African-Americans (AA) and 1562 European-Americans (EA) from a cardiac catheterization cohort (CATHGEN), we identify gene-by-traffic exposure interactions associated with the number of significantly diseased coronary vessels as a measure of chronic atherosclerosis. We found five suggestive (P<1x10-5) interactions in the AA GWIS, of which two (rs1856746 and rs2791713) replicated in the EA cohort (P < 0.05). Both SNPs are in the PIGR-FCAMR locus and are eQTLs in lymphocytes. The protein products of both PIGR and FCAMR are implicated in inflammatory processes. In the EA GWIS, there were three suggestive interactions; none of these replicated in the AA GWIS. All three were intergenic; the most significant interaction was in a regulatory region associated with SAMSN1, a gene previously associated with atherosclerosis and B cell activation. In conclusion, we have uncovered several novel genes associated with coronary atherosclerosis in individuals chronically exposed to increased ambient concentrations of traffic air pollution. These genes point towards inflammatory pathways that may modify the effects of air pollution on cardiovascular disease risk.
منابع مشابه
Genetic Variants in the Bone Morphogenic Protein Gene Family Modify the Association between Residential Exposure to Traffic and Peripheral Arterial Disease
There is a growing literature indicating that genetic variants modify many of the associations between environmental exposures and clinical outcomes, potentially by increasing susceptibility to these exposures. However, genome-scale investigations of these interactions have been rarely performed particularly in the case of air pollution exposures. We performed race-stratified genome-wide gene-e...
متن کاملKnowledge-Driven Analysis Identifies a Gene–Gene Interaction Affecting High-Density Lipoprotein Cholesterol Levels in Multi-Ethnic Populations
Total cholesterol, low-density lipoprotein cholesterol, triglyceride, and high-density lipoprotein cholesterol (HDL-C) levels are among the most important risk factors for coronary artery disease. We tested for gene-gene interactions affecting the level of these four lipids based on prior knowledge of established genome-wide association study (GWAS) hits, protein-protein interactions, and pathw...
متن کاملDirect Bisulfite Sequencing and Methylation Specific PCR to Detect Methylation of p15INK4b and F7 genes in Coronary Artery Disease Patients
Genome-Wide Association Studies (GWAS) have identified genetic variants contributing to the risk of cardiovascular disease (CVD) at the chromosome 9p21 locus. The chromosome 9p21 is an important susceptibility locus for several multifactorial diseases like ischemic stroke, aortic aneurysm, type 2 diabetes mellitus and coronary artery disease (CAD). F7 gene because of its role in activating the ...
متن کاملData on genetic analysis of atherosclerosis identifies a major susceptibility locus in the major histocompatibility complex of mice
BACKGROUND AND AIMS Recent genome-wide association studies (GWAS) have identified over 50 significant loci containing common variants associated with coronary artery disease. However, these variants explain only 26% of the genetic heritability of the disease, suggesting that many more variants remain to be discovered. Here, we examined the genetic basis underlying the marked difference between ...
متن کاملP30: Are There Anxious Genes?
Anxiety comprises many clinical descriptions and phenotypes. A genetic predisposition to anxiety is undoubted; however, the nature and extent of that contribution is still unclear. Extensive genetic studies of the serotonin (5-hydroxytryptamine, 5-HT) transporter (5-HTT) gene have revealed how variation in gene expression can be correlated with anxiety phenotypes. Complete genome-wide linkage s...
متن کامل